Source code for woodwork.table_schema

import copy
from collections.abc import Hashable

import pandas as pd

import woodwork as ww
from woodwork.column_schema import ColumnSchema
from woodwork.exceptions import ColumnNotPresentError
from woodwork.type_sys.utils import _get_ltype_class
from woodwork.utils import _convert_input_to_set


[docs]class TableSchema(object):
[docs] def __init__( self, column_names, logical_types, name=None, index=None, time_index=None, semantic_tags=None, table_metadata=None, column_metadata=None, use_standard_tags=False, column_descriptions=None, column_origins=None, validate=True, ): """Create TableSchema Args: column_names (list, set): The columns present in the TableSchema. logical_types (dict[str -> LogicalType]): Dictionary mapping column names in the TableSchema to the LogicalType for the column. All columns present in the TableSchema must be present in the logical_types dictionary. name (str, optional): Name used to identify the TableSchema. index (str, optional): Name of the index column. time_index (str, optional): Name of the time index column. semantic_tags (dict, optional): Dictionary mapping column names in the TableSchema to the semantic tags for the column. The keys in the dictionary should be strings that correspond to columns in the TableSchema. There are two options for specifying the dictionary values: (str): If only one semantic tag is being set, a single string can be used as a value. (list[str] or set[str]): If multiple tags are being set, a list or set of strings can be used as the value. Semantic tags will be set to an empty set for any column not included in the dictionary. table_metadata (dict[str -> json serializable], optional): Dictionary containing extra metadata for the TableSchema. The dictionary must contain data types that are JSON serializable such as string, integers, and floats. DataFrame and Series types are not supported. column_metadata (dict[str -> dict[str -> json serializable]], optional): Dictionary mapping column names to that column's metadata dictionary. use_standard_tags (bool, dict[str -> bool], optional): Determines whether standard semantic tags will be added to columns based on the specified logical type for the column. If a single boolean is supplied, will apply the same use_standard_tags value to all columns. A dictionary can be used to specify ``use_standard_tags`` values for individual columns. Unspecified columns will use the default value. Defaults to False. column_descriptions (dict[str -> str], optional): Dictionary mapping column names to column descriptions. column_origins (str, dict[str -> str], optional): Origin of each column. If a string is supplied, it is used as the origin for all columns. A dictionary can be used to set origins for individual columns. validate (bool, optional): Whether parameter validation should occur. Defaults to True. Warning: Should be set to False only when parameters and data are known to be valid. Any errors resulting from skipping validation with invalid inputs may not be easily understood. """ if validate: # Check that inputs are valid _validate_params( column_names, name, index, time_index, logical_types, table_metadata, column_metadata, semantic_tags, column_descriptions, column_origins, use_standard_tags, ) self._name = name self._metadata = table_metadata or {} # use_standard_tags should be a dictionary mapping each column to its boolean if isinstance(use_standard_tags, bool): use_standard_tags = { col_name: use_standard_tags for col_name in column_names } else: use_standard_tags = { **{col_name: False for col_name in column_names}, **use_standard_tags, } # Infer logical types and create columns self.columns = self._create_columns( column_names, logical_types, semantic_tags, use_standard_tags, column_descriptions, column_origins, column_metadata, validate, ) if index is not None: self.set_index(index, validate=validate) if time_index is not None: self.set_time_index(time_index, validate=validate)
def __eq__(self, other, deep=True): if self.name != other.name: return False if self.index != other.index: return False if self.time_index != other.time_index: return False if set(self.columns.keys()) != set(other.columns.keys()): return False for col_name in self.columns: if not self.columns[col_name].__eq__(other.columns[col_name], deep=deep): return False if deep and self.metadata != other.metadata: return False return True def __repr__(self): """A string representation of a TableSchema containing typing information.""" return repr(self._get_typing_info()) def _repr_html_(self): """An HTML representation of a TableSchema for IPython.display in Jupyter Notebooks containing typing information and a preview of the data.""" return self._get_typing_info().to_html() @property def types(self): """DataFrame containing the physical dtypes, logical types and semantic tags for the TableSchema.""" return self._get_typing_info() def _get_typing_info(self): """Creates a DataFrame that contains the typing information for a TableSchema.""" typing_info = {} for col_name, col in self.columns.items(): types = [col.logical_type, str(list(col.semantic_tags))] typing_info[col_name] = types columns = ["Logical Type", "Semantic Tag(s)"] df = pd.DataFrame.from_dict( typing_info, orient="index", columns=columns, dtype="object" ) df.index.name = "Column" return df @property def name(self): """Name of schema""" return self._name @name.setter def name(self, name): """Set name of schema""" if name: _check_name(name) self._name = name @property def metadata(self): """Metadata of the table""" return self._metadata @metadata.setter def metadata(self, metadata): """Set table metadata""" if metadata: _check_table_metadata(metadata) self._metadata = metadata or {} @property def logical_types(self): """A dictionary containing logical types for each column""" return {col_name: col.logical_type for col_name, col in self.columns.items()} @property def semantic_tags(self): """A dictionary containing semantic tags for each column""" return {col_name: col.semantic_tags for col_name, col in self.columns.items()} @property def index(self): """The index column for the table""" for col_name, column in self.columns.items(): if "index" in column.semantic_tags: return col_name return None @property def time_index(self): """The time index column for the table""" for col_name, column in self.columns.items(): if "time_index" in column.semantic_tags: return col_name return None @property def use_standard_tags(self): return { col_name: col.use_standard_tags for col_name, col in self.columns.items() }
[docs] def set_types(self, logical_types=None, semantic_tags=None, retain_index_tags=True): """Update the logical type and semantic tags for any columns names in the provided types dictionaries, updating the TableSchema at those columns. Args: logical_types (dict[str -> LogicalType], optional): A dictionary defining the new logical types for the specified columns. semantic_tags (dict[str -> str/list/set], optional): A dictionary defining the new semantic_tags for the specified columns. retain_index_tags (bool, optional): If True, will retain any index or time_index semantic tags set on the column. If False, will replace all semantic tags any time a column's semantic tags or logical type changes. Defaults to True. """ logical_types = logical_types or {} _check_logical_types(self.columns.keys(), logical_types, require_all_cols=False) semantic_tags = semantic_tags or {} _check_semantic_tags(self.columns.keys(), semantic_tags) for col_name in logical_types.keys() | semantic_tags.keys(): original_tags = self.semantic_tags[col_name] # Update Logical Type for the TableSchema, getting new semantic tags new_logical_type = logical_types.get(col_name) if new_logical_type is not None: self.columns[col_name].logical_type = new_logical_type # Set new semantic tags, removing existing tags new_semantic_tags = semantic_tags.get(col_name) if new_semantic_tags is None: self.columns[col_name]._reset_semantic_tags() else: self.columns[col_name]._set_semantic_tags(new_semantic_tags) _validate_not_setting_index_tags(self.semantic_tags[col_name], col_name) if retain_index_tags and "index" in original_tags: self._set_index_tags(col_name) if retain_index_tags and "time_index" in original_tags: self._set_time_index_tags(col_name)
[docs] def add_semantic_tags(self, semantic_tags): """Adds specified semantic tags to columns, updating the Woodwork typing information. Will retain any previously set values. Args: semantic_tags (dict[str -> str/list/set]): A dictionary mapping the columns in the DataFrame to the tags that should be added to the column's semantic tags """ _check_semantic_tags(self.columns.keys(), semantic_tags) for col_name, tags_to_add in semantic_tags.items(): tags_to_add = _convert_input_to_set(tags_to_add) _validate_not_setting_index_tags(tags_to_add, col_name) self.columns[col_name]._add_semantic_tags(tags_to_add, col_name)
[docs] def remove_semantic_tags(self, semantic_tags): """Remove the semantic tags for any column names in the provided semantic_tags dictionary, updating the Woodwork typing information. Including `index` or `time_index` tags will set the Woodwork index or time index to None for the DataFrame. Args: semantic_tags (dict[str -> str/list/set]): A dictionary mapping the columns in the DataFrame to the tags that should be removed from the column's semantic tags """ _check_semantic_tags(self.columns.keys(), semantic_tags) for col_name, tags_to_remove in semantic_tags.items(): standard_tags = self.logical_types[col_name].standard_tags tags_to_remove = _convert_input_to_set(tags_to_remove) original_tags = self.semantic_tags[col_name].copy() self.columns[col_name]._remove_semantic_tags(tags_to_remove, col_name) # If the index is removed, reinsert any standard tags not explicitly removed if ( self.use_standard_tags[col_name] and "index" in original_tags and "index" not in self.columns[col_name].semantic_tags ): standard_tags_removed = tags_to_remove.intersection(standard_tags) standard_tags_to_reinsert = standard_tags.difference( standard_tags_removed ) self.columns[col_name].semantic_tags = self.semantic_tags[ col_name ].union(standard_tags_to_reinsert)
[docs] def reset_semantic_tags(self, columns=None, retain_index_tags=False): """Reset the semantic tags for the specified columns to the default values. The default values will be either an empty set or a set of the standard tags based on the column logical type, controlled by the use_standard_tags property on the table. Column names can be provided as a single string, a list of strings or a set of strings. If columns is not specified, tags will be reset for all columns. Args: columns (str/list/set, optional): The columns for which the semantic tags should be reset. retain_index_tags (bool, optional): If True, will retain any index or time_index semantic tags set on the column. If False, will clear all semantic tags. Defaults to False. """ columns = _convert_input_to_set(columns, "columns") cols_not_found = sorted(list(columns.difference(set(self.columns.keys())))) if cols_not_found: raise ColumnNotPresentError(cols_not_found) if not columns: columns = self.columns.keys() for col_name in columns: original_tags = self.semantic_tags[col_name] self.columns[col_name]._reset_semantic_tags() if retain_index_tags and "index" in original_tags: self._set_index_tags(col_name) if retain_index_tags and "time_index" in original_tags: self._set_time_index_tags(col_name)
def _create_columns( self, column_names, logical_types, semantic_tags, use_standard_tags, column_descriptions, column_origins, column_metadata, validate, ): """Create a dictionary with column names as keys and new column dictionaries holding each column's typing information as values.""" columns = {} for name in column_names: semantic_tags_for_col = _convert_input_to_set( (semantic_tags or {}).get(name), error_language=f"semantic_tags for {name}", validate=validate, ) if validate: _validate_not_setting_index_tags(semantic_tags_for_col, name) description = (column_descriptions or {}).get(name) origin = ( column_origins if isinstance(column_origins, str) else (column_origins or {}).get(name) ) metadata_for_col = (column_metadata or {}).get(name) columns[name] = ColumnSchema( logical_type=logical_types.get(name), semantic_tags=semantic_tags_for_col, use_standard_tags=use_standard_tags.get(name), description=description, origin=origin, metadata=metadata_for_col, validate=validate, ) return columns
[docs] def set_index(self, new_index, validate=True): """Sets the index. Handles setting a new index, updating the index, or removing the index. Args: new_index (str): Name of the new index column. Must be present in the TableSchema. If None, will remove the index. """ old_index = self.index if old_index is not None: self.remove_semantic_tags({old_index: "index"}) if new_index is not None: if validate: _check_index(self.columns.keys(), new_index) if "time_index" in self.columns[new_index].semantic_tags: info = f'"{new_index}" is already set as the time index. ' info += "A time index cannot also be the index." raise ValueError(info) self._set_index_tags(new_index)
[docs] def set_time_index(self, new_time_index, validate=True): """Set the time index. Adds the 'time_index' semantic tag to the column and clears the tag from any previously set index column Args: new_time_index (str): The name of the column to set as the time index. If None, will remove the time_index. """ old_time_index = self.time_index if old_time_index is not None: self.remove_semantic_tags({old_time_index: "time_index"}) if new_time_index is not None: if validate: _check_time_index( self.columns.keys(), new_time_index, self.logical_types.get(new_time_index), ) if "index" in self.columns[new_time_index].semantic_tags: info = f'"{new_time_index}" is already set as the index. ' info += "An index cannot also be the time index." raise ValueError(info) self._set_time_index_tags(new_time_index)
[docs] def rename(self, columns): """Renames columns in a TableSchema Args: columns (dict[str -> str]): A dictionary mapping current column names to new column names. Returns: woodwork.TableSchema: TableSchema with the specified columns renamed. """ if not isinstance(columns, dict): raise TypeError("columns must be a dictionary") for old_name, new_name in columns.items(): if old_name not in self.columns: raise ColumnNotPresentError( f"Column to rename must be present. {old_name} cannot be found." ) if new_name in self.columns and new_name not in columns.keys(): raise ValueError( f"The column {new_name} is already present. Please choose another name to rename {old_name} to or also rename {old_name}." ) if len(columns) != len(set(columns.values())): raise ValueError("New columns names must be unique from one another.") new_schema = copy.deepcopy(self) cols_to_update = {} for old_name, new_name in columns.items(): col = new_schema.columns.pop(old_name) cols_to_update[new_name] = col new_schema.columns.update(cols_to_update) return new_schema
def _set_index_tags(self, index): """Updates the semantic tags of the index by removing any standard tags before adding the 'index' tag.""" column = self.columns[index] standard_tags = column.logical_type.standard_tags new_tags = column.semantic_tags.difference(standard_tags) new_tags.add("index") self.columns[index].semantic_tags = new_tags def _set_time_index_tags(self, time_index): self.columns[time_index].semantic_tags.add("time_index") def _filter_cols(self, include=None, exclude=None, col_names=False): """Return list of columns filtered with any of: semantic tags, LogicalTypes, column names Args: include (str or LogicalType or list[str or LogicalType]): parameter or list of parameters to filter columns by. Can be Logical Types or Semantic Tags. Columns that match will be included in the returned list of columns. exclude (str or LogicalType or list[str or LogicalType]): parameter or list of parameters to filter columns by. Can be Logical Types or Semantic Tags. Columns that match will be excluded from the returned list of columns. col_names (bool): Specifies whether to filter columns by name. Defaults to False. Returns: List[str] of column names that fit into filter. """ assert not (include and exclude), "Cannot specify both include and exclude" if include and not isinstance(include, list): include = [include] elif exclude and not isinstance(exclude, list): exclude = [exclude] if include is not None: selectors = include elif exclude is not None: selectors = exclude ltypes_used = set() ltypes_in_schema = {type(col.logical_type) for col in self.columns.values()} tags_used = set() tags_in_schema = { tag for col in self.columns.values() for tag in col.semantic_tags } col_name_matches = set() for selector in selectors: # Determine if the selector is a registered, uninstantiated LogicalType maybe_ltype = selector if isinstance(selector, str): # Convert possible string to LogicalType - unregistered LogicalTypes return None maybe_ltype = ww.type_system.str_to_logical_type( selector, raise_error=False ) # Get the class - unregistered LogicalTypes return LogicalTypeMetaClass maybe_ltype_class = _get_ltype_class(maybe_ltype) if maybe_ltype_class in ww.type_system.registered_types: if maybe_ltype not in ww.type_system.registered_types: raise TypeError( f"Invalid selector used in include: {maybe_ltype} cannot be instantiated" ) if maybe_ltype in ltypes_in_schema: ltypes_used.add(maybe_ltype) elif maybe_ltype_class == ww.logical_types.LogicalType.__class__: raise TypeError( f"Specified LogicalType selector {maybe_ltype} is not registered in Woodwork's type system." ) # Hashability as a proxy for whether a selector is possibly a semantic tag or column name if not isinstance(selector, Hashable): raise TypeError( f"Invalid selector used in include: {selector} must be a " "string, uninstantiated and registered LogicalType, or valid column name" ) # Determine if the selector is a semantic tag if selector in tags_in_schema: tags_used.add(selector) # Determine if the selector is a column name if col_names and selector in self.columns: col_name_matches.add(selector) cols_to_return = [] cols_seen = set() for col_name, col in self.columns.items(): is_match = ( type(col.logical_type) in ltypes_used or col.semantic_tags.intersection(tags_used) or col_name in col_name_matches ) if include is not None and is_match and col_name not in cols_seen: cols_to_return.append(col_name) cols_seen.add(col_name) elif exclude is not None and not is_match and col_name not in cols_seen: cols_to_return.append(col_name) cols_seen.add(col_name) return cols_to_return @property def _get_subset_schema(self): # removing this property might cause breaking changes in EvalML return self.get_subset_schema def get_subset_schema(self, subset_cols): """Creates a new TableSchema with specified columns, retaining typing information. Args: subset_cols (list[str]): subset of columns from which to create the new TableSchema Returns: TableSchema: New TableSchema with attributes from original TableSchema """ new_logical_types = {} new_semantic_tags = {} new_column_descriptions = {} new_column_origins = {} new_column_metadata = {} for col_name in subset_cols: col = col = self.columns[col_name] new_logical_types[col_name] = col.logical_type new_semantic_tags[col_name] = col.semantic_tags new_column_descriptions[col_name] = col.description new_column_origins[col_name] = col.origin new_column_metadata[col_name] = col.metadata new_index = self.index if self.index in subset_cols else None new_time_index = self.time_index if self.time_index in subset_cols else None if new_index is not None: new_semantic_tags[new_index] = new_semantic_tags[new_index].difference( {"index"} ) if new_time_index is not None: new_semantic_tags[new_time_index] = new_semantic_tags[ new_time_index ].difference({"time_index"}) return TableSchema( subset_cols, new_logical_types, name=self.name, index=new_index, time_index=new_time_index, semantic_tags=copy.deepcopy(new_semantic_tags), use_standard_tags=self.use_standard_tags.copy(), table_metadata=copy.deepcopy(self.metadata), column_metadata=copy.deepcopy(new_column_metadata), column_descriptions=new_column_descriptions, column_origins=new_column_origins, validate=False, )
def _validate_params( column_names, name, index, time_index, logical_types, table_metadata, column_metadata, semantic_tags, column_descriptions, column_origins, use_standard_tags, ): """Check that values supplied during TableSchema initialization are valid""" _check_column_names(column_names) _check_use_standard_tags(column_names, use_standard_tags) if name: _check_name(name) if index is not None: _check_index(column_names, index) if logical_types: _check_logical_types(column_names, logical_types) if table_metadata: _check_table_metadata(table_metadata) if column_metadata: _check_column_metadata(column_names, column_metadata) if time_index is not None: _check_time_index(column_names, time_index, logical_types.get(time_index)) if semantic_tags: _check_semantic_tags(column_names, semantic_tags) if column_descriptions: _check_column_descriptions(column_names, column_descriptions) if column_origins: _check_column_origins(column_names, column_origins) def _check_name(name): if not isinstance(name, str): raise TypeError("Table name must be a string") def _check_column_names(column_names): if not isinstance(column_names, (list, set)): raise TypeError("Column names must be a list or set") if len(column_names) != len(set(column_names)): raise IndexError("TableSchema cannot contain duplicate columns names") def _check_index(column_names, index): if index not in column_names: # User specifies an index that is not in the list of column names raise ColumnNotPresentError( f"Specified index column `{index}` not found in TableSchema." ) def _check_time_index(column_names, time_index, logical_type): if time_index not in column_names: raise ColumnNotPresentError( f"Specified time index column `{time_index}` not found in TableSchema" ) ltype_class = _get_ltype_class(logical_type) if not ( ltype_class == ww.logical_types.Datetime or "numeric" in ltype_class.standard_tags ): raise TypeError("Time index column must be a Datetime or numeric column.") def _check_logical_types(column_names, logical_types, require_all_cols=True): if not isinstance(logical_types, dict): raise TypeError("logical_types must be a dictionary") cols_in_ltypes = set(logical_types.keys()) cols_in_schema = set(column_names) cols_not_found_in_schema = cols_in_ltypes.difference(cols_in_schema) if cols_not_found_in_schema: raise ColumnNotPresentError( "logical_types contains columns that are not present in " f"TableSchema: {sorted(list(cols_not_found_in_schema))}" ) cols_not_found_in_ltypes = cols_in_schema.difference(cols_in_ltypes) if cols_not_found_in_ltypes and require_all_cols: raise ColumnNotPresentError( f"logical_types is missing columns that are present in " f"TableSchema: {sorted(list(cols_not_found_in_ltypes))}" ) for col_name, logical_type in logical_types.items(): if _get_ltype_class(logical_type) not in ww.type_system.registered_types: raise TypeError( "Logical Types must be of the LogicalType class " "and registered in Woodwork's type system. " f"{logical_type} does not meet that criteria." ) def _check_semantic_tags(column_names, semantic_tags): if not isinstance(semantic_tags, dict): raise TypeError("semantic_tags must be a dictionary") cols_not_found = set(semantic_tags.keys()).difference(set(column_names)) if cols_not_found: raise ColumnNotPresentError( "semantic_tags contains columns that are not present in " f"TableSchema: {sorted(list(cols_not_found))}" ) for col_name, col_tags in semantic_tags.items(): if not isinstance(col_tags, (str, list, set)): raise TypeError( f"semantic_tags for {col_name} must be a string, set or list" ) def _check_column_descriptions(column_names, column_descriptions): if not isinstance(column_descriptions, dict): raise TypeError("column_descriptions must be a dictionary") cols_not_found = set(column_descriptions.keys()).difference(set(column_names)) if cols_not_found: raise ColumnNotPresentError( "column_descriptions contains columns that are not present in " f"TableSchema: {sorted(list(cols_not_found))}" ) def _check_column_origins(column_names, column_origins): if not isinstance(column_origins, (dict, str)): raise TypeError("column_origins must be a dictionary or a string") if isinstance(column_origins, dict): cols_not_found = set(column_origins.keys()).difference(set(column_names)) if cols_not_found: raise ColumnNotPresentError( "column_origins contains columns that are not present in " f"TableSchema: {sorted(list(cols_not_found))}" ) def _check_table_metadata(table_metadata): if not isinstance(table_metadata, dict): raise TypeError("Table metadata must be a dictionary.") def _check_column_metadata(column_names, column_metadata): if not isinstance(column_metadata, dict): raise TypeError("Column metadata must be a dictionary.") cols_not_found = set(column_metadata.keys()).difference(set(column_names)) if cols_not_found: raise ColumnNotPresentError( "column_metadata contains columns that are not present in " f"TableSchema: {sorted(list(cols_not_found))}" ) def _check_use_standard_tags(column_names, use_standard_tags): if not isinstance(use_standard_tags, (dict, bool)): raise TypeError("use_standard_tags must be a dictionary or a boolean") if isinstance(use_standard_tags, dict): cols_not_found = set(use_standard_tags.keys()).difference(set(column_names)) if cols_not_found: raise ColumnNotPresentError( "use_standard_tags contains columns that are not present in " f"TableSchema: {sorted(list(cols_not_found))}" ) for col_name, use_standard_tags_for_col in use_standard_tags.items(): if not isinstance(use_standard_tags_for_col, bool): raise TypeError( f"use_standard_tags for column {col_name} must be a boolean" ) def _validate_not_setting_index_tags(semantic_tags, col_name): """Verify user has not supplied tags that cannot be set directly""" if "index" in semantic_tags: raise ValueError( f"Cannot add 'index' tag directly for column {col_name}. To set a column as the index, " "use DataFrame.ww.set_index() instead." ) if "time_index" in semantic_tags: raise ValueError( f"Cannot add 'time_index' tag directly for column {col_name}. To set a column as the time index, " "use DataFrame.ww.set_time_index() instead." )