Get Started¶
In this guide, you walk through examples where you initialize Woodwork on a DataFrame and on a Series. Along the way, you learn how to update and remove logical types and semantic tags. You also learn how to use typing information to select subsets of data.
Types and Tags¶
Woodwork relies heavily on the concepts of physical types, logical types and semantic tags. These concepts are covered in detail in Working with Types and Tags, but we provide brief definitions here for reference:
Physical Type: defines how the data is stored on disk or in memory.
Logical Type: defines how the data should be parsed or interpreted.
Semantic Tag(s): provides additional data about the meaning of the data or how it should be used.
Start learning how to use Woodwork by reading in a dataframe that contains retail sales data.
[1]:
import pandas as pd
df = pd.read_csv("https://api.featurelabs.com/datasets/online-retail-logs-2018-08-28.csv")
df['order_product_id'] = range(df.shape[0])
df.head(5)
[1]:
order_id | product_id | description | quantity | order_date | unit_price | customer_name | country | total | cancelled | order_product_id | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 536365 | 85123A | WHITE HANGING HEART T-LIGHT HOLDER | 6 | 2010-12-01 08:26:00 | 4.2075 | Andrea Brown | United Kingdom | 25.245 | False | 0 |
1 | 536365 | 71053 | WHITE METAL LANTERN | 6 | 2010-12-01 08:26:00 | 5.5935 | Andrea Brown | United Kingdom | 33.561 | False | 1 |
2 | 536365 | 84406B | CREAM CUPID HEARTS COAT HANGER | 8 | 2010-12-01 08:26:00 | 4.5375 | Andrea Brown | United Kingdom | 36.300 | False | 2 |
3 | 536365 | 84029G | KNITTED UNION FLAG HOT WATER BOTTLE | 6 | 2010-12-01 08:26:00 | 5.5935 | Andrea Brown | United Kingdom | 33.561 | False | 3 |
4 | 536365 | 84029E | RED WOOLLY HOTTIE WHITE HEART. | 6 | 2010-12-01 08:26:00 | 5.5935 | Andrea Brown | United Kingdom | 33.561 | False | 4 |
As you can see, this is a dataframe containing several different data types, including dates, categorical values, numeric values, and natural language descriptions. Next, initialize Woodwork on this DataFrame.
Initializing Woodwork on a DataFrame¶
Importing Woodwork creates a special namespace on your DataFrames, DataFrame.ww
, that can be used to set or update the typing information for the DataFrame. As long as Woodwork has been imported, initializing Woodwork on a DataFrame is as simple as calling .ww.init()
on the DataFrame of interest. An optional name parameter can be specified to label the data.
[2]:
import woodwork as ww
df.ww.init(name="retail")
df.ww
[2]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
order_id | category | Categorical | ['category'] |
product_id | category | Categorical | ['category'] |
description | category | Categorical | ['category'] |
quantity | int64 | Integer | ['numeric'] |
order_date | datetime64[ns] | Datetime | [] |
unit_price | float64 | Double | ['numeric'] |
customer_name | category | Categorical | ['category'] |
country | category | Categorical | ['category'] |
total | float64 | Double | ['numeric'] |
cancelled | bool | Boolean | [] |
order_product_id | int64 | Integer | ['numeric'] |
Using just this simple call, Woodwork was able to infer the logical types present in the data by analyzing the DataFrame dtypes as well as the information contained in the columns. In addition, Woodwork also added semantic tags to some of the columns based on the logical types that were inferred.
Warning
Woodwork uses a weak reference for maintaining a reference from the accessor to the DataFrame. Because of this, chaining a Woodwork call onto another call that creates a new DataFrame or Series object can be problematic.
Instead of calling pd.DataFrame({'id':[1, 2, 3]}).ww.init()
, first store the DataFrame in a new
variable and then initialize Woodwork:
df = pd.DataFrame({'id':[1, 2, 3]})
df.ww.init()
All Woodwork methods and properties can be accessed through the ww
namespace on the DataFrame. DataFrame methods called from the Woodwork namespace will be passed to the DataFrame, and whenever possible, Woodwork will be initialized on the returned object, assuming it is a Series or a DataFrame.
As an example, use the head
method to create a new DataFrame containing the first 5 rows of the original data, with Woodwork typing information retained.
[3]:
head_df = df.ww.head(5)
head_df.ww
[3]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
order_id | category | Categorical | ['category'] |
product_id | category | Categorical | ['category'] |
description | category | Categorical | ['category'] |
quantity | int64 | Integer | ['numeric'] |
order_date | datetime64[ns] | Datetime | [] |
unit_price | float64 | Double | ['numeric'] |
customer_name | category | Categorical | ['category'] |
country | category | Categorical | ['category'] |
total | float64 | Double | ['numeric'] |
cancelled | bool | Boolean | [] |
order_product_id | int64 | Integer | ['numeric'] |
[4]:
head_df
[4]:
order_id | product_id | description | quantity | order_date | unit_price | customer_name | country | total | cancelled | order_product_id | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 536365 | 85123A | WHITE HANGING HEART T-LIGHT HOLDER | 6 | 2010-12-01 08:26:00 | 4.2075 | Andrea Brown | United Kingdom | 25.245 | False | 0 |
1 | 536365 | 71053 | WHITE METAL LANTERN | 6 | 2010-12-01 08:26:00 | 5.5935 | Andrea Brown | United Kingdom | 33.561 | False | 1 |
2 | 536365 | 84406B | CREAM CUPID HEARTS COAT HANGER | 8 | 2010-12-01 08:26:00 | 4.5375 | Andrea Brown | United Kingdom | 36.300 | False | 2 |
3 | 536365 | 84029G | KNITTED UNION FLAG HOT WATER BOTTLE | 6 | 2010-12-01 08:26:00 | 5.5935 | Andrea Brown | United Kingdom | 33.561 | False | 3 |
4 | 536365 | 84029E | RED WOOLLY HOTTIE WHITE HEART. | 6 | 2010-12-01 08:26:00 | 5.5935 | Andrea Brown | United Kingdom | 33.561 | False | 4 |
Note
Once Woodwork is initialized on a DataFrame, it is recommended to go through the ww
namespace when performing DataFrame operations to avoid invalidating Woodwork’s typing information.
Updating Logical Types¶
If the initial inference was not to our liking, the logical type can be changed to a more appropriate value. Let’s change some of the columns to a different logical type to illustrate this process. In this case, set the logical type for the order_product_id
and country
columns to be Categorical
and set customer_name
to have a logical type of PersonFullName
.
[5]:
df.ww.set_types(logical_types={
'customer_name': 'PersonFullName',
'country': 'Categorical',
'order_product_id': 'Categorical'
})
df.ww.types
[5]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
order_id | category | Categorical | ['category'] |
product_id | category | Categorical | ['category'] |
description | category | Categorical | ['category'] |
quantity | int64 | Integer | ['numeric'] |
order_date | datetime64[ns] | Datetime | [] |
unit_price | float64 | Double | ['numeric'] |
customer_name | string | PersonFullName | [] |
country | category | Categorical | ['category'] |
total | float64 | Double | ['numeric'] |
cancelled | bool | Boolean | [] |
order_product_id | category | Categorical | ['category'] |
Inspect the information in the types
output. There, you can see that the Logical type for the three columns has been updated with the logical types you specified.
Selecting Columns¶
Now that you’ve prepared logical types, you can select a subset of the columns based on their logical types. Select only the columns that have a logical type of Integer
or Double
.
[6]:
numeric_df = df.ww.select(['Integer', 'Double'])
numeric_df.ww
[6]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
quantity | int64 | Integer | ['numeric'] |
unit_price | float64 | Double | ['numeric'] |
total | float64 | Double | ['numeric'] |
This selection process has returned a new Woodwork DataFrame containing only the columns that match the logical types you specified. After you have selected the columns you want, you can use the DataFrame containing just those columns as you normally would for any additional analysis.
[7]:
numeric_df
[7]:
quantity | unit_price | total | |
---|---|---|---|
0 | 6 | 4.2075 | 25.2450 |
1 | 6 | 5.5935 | 33.5610 |
2 | 8 | 4.5375 | 36.3000 |
3 | 6 | 5.5935 | 33.5610 |
4 | 6 | 5.5935 | 33.5610 |
... | ... | ... | ... |
401599 | 12 | 1.4025 | 16.8300 |
401600 | 6 | 3.4650 | 20.7900 |
401601 | 4 | 6.8475 | 27.3900 |
401602 | 4 | 6.8475 | 27.3900 |
401603 | 3 | 8.1675 | 24.5025 |
401604 rows × 3 columns
Adding Semantic Tags¶
Next, let’s add semantic tags to some of the columns. Add the tag of product_details
to the description
column, and tag the total
column with currency
.
[8]:
df.ww.set_types(semantic_tags={'description':'product_details', 'total': 'currency'})
df.ww
[8]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
order_id | category | Categorical | ['category'] |
product_id | category | Categorical | ['category'] |
description | category | Categorical | ['category', 'product_details'] |
quantity | int64 | Integer | ['numeric'] |
order_date | datetime64[ns] | Datetime | [] |
unit_price | float64 | Double | ['numeric'] |
customer_name | string | PersonFullName | [] |
country | category | Categorical | ['category'] |
total | float64 | Double | ['currency', 'numeric'] |
cancelled | bool | Boolean | [] |
order_product_id | category | Categorical | ['category'] |
Select columns based on a semantic tag. Only select the columns tagged with category
.
[9]:
category_df = df.ww.select('category')
category_df.ww
[9]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
order_id | category | Categorical | ['category'] |
product_id | category | Categorical | ['category'] |
description | category | Categorical | ['category', 'product_details'] |
country | category | Categorical | ['category'] |
order_product_id | category | Categorical | ['category'] |
Select columns using multiple semantic tags or a mixture of semantic tags and logical types.
[10]:
category_numeric_df = df.ww.select(['numeric', 'category'])
category_numeric_df.ww
[10]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
order_id | category | Categorical | ['category'] |
product_id | category | Categorical | ['category'] |
description | category | Categorical | ['category', 'product_details'] |
quantity | int64 | Integer | ['numeric'] |
unit_price | float64 | Double | ['numeric'] |
country | category | Categorical | ['category'] |
total | float64 | Double | ['currency', 'numeric'] |
order_product_id | category | Categorical | ['category'] |
[11]:
mixed_df = df.ww.select(['Boolean', 'product_details'])
mixed_df.ww
[11]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
description | category | Categorical | ['category', 'product_details'] |
cancelled | bool | Boolean | [] |
To select an individual column, specify the column name. Woodwork will be initialized on the returned Series and you can use the Series for additional analysis as needed.
[12]:
total = df.ww['total']
total.ww
[12]:
<Series: total (Physical Type = float64) (Logical Type = Double) (Semantic Tags = {'currency', 'numeric'})>
[13]:
total
[13]:
0 25.2450
1 33.5610
2 36.3000
3 33.5610
4 33.5610
...
401599 16.8300
401600 20.7900
401601 27.3900
401602 27.3900
401603 24.5025
Name: total, Length: 401604, dtype: float64
Select multiple columns by supplying a list of column names.
[14]:
multiple_cols_df = df.ww[['product_id', 'total', 'unit_price']]
multiple_cols_df.ww
[14]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
product_id | category | Categorical | ['category'] |
total | float64 | Double | ['currency', 'numeric'] |
unit_price | float64 | Double | ['numeric'] |
Removing Semantic Tags¶
Remove specific semantic tags from a column if they are no longer needed. In this example, remove the product_details
tag from the description
column.
[15]:
df.ww.remove_semantic_tags({'description':'product_details'})
df.ww
[15]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
order_id | category | Categorical | ['category'] |
product_id | category | Categorical | ['category'] |
description | category | Categorical | ['category'] |
quantity | int64 | Integer | ['numeric'] |
order_date | datetime64[ns] | Datetime | [] |
unit_price | float64 | Double | ['numeric'] |
customer_name | string | PersonFullName | [] |
country | category | Categorical | ['category'] |
total | float64 | Double | ['currency', 'numeric'] |
cancelled | bool | Boolean | [] |
order_product_id | category | Categorical | ['category'] |
Notice how the product_details
tag has been removed from the description
column. If you want to remove all user-added semantic tags from all columns, you can do that, too.
[16]:
df.ww.reset_semantic_tags()
df.ww
[16]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
order_id | category | Categorical | ['category'] |
product_id | category | Categorical | ['category'] |
description | category | Categorical | ['category'] |
quantity | int64 | Integer | ['numeric'] |
order_date | datetime64[ns] | Datetime | [] |
unit_price | float64 | Double | ['numeric'] |
customer_name | string | PersonFullName | [] |
country | category | Categorical | ['category'] |
total | float64 | Double | ['numeric'] |
cancelled | bool | Boolean | [] |
order_product_id | category | Categorical | ['category'] |
Set Index and Time Index¶
At any point, you can designate certain columns as the Woodwork index
or time_index
with the methods set_index and set_time_index. These methods can be used to assign these columns for the first time or to change the column being used as the index or time index.
Index and time index columns contain index
and time_index
semantic tags, respectively.
[17]:
df.ww.set_index('order_product_id')
df.ww.index
[17]:
'order_product_id'
[18]:
df.ww.set_time_index('order_date')
df.ww.time_index
[18]:
'order_date'
[19]:
df.ww
[19]:
Physical Type | Logical Type | Semantic Tag(s) | |
---|---|---|---|
Column | |||
order_id | category | Categorical | ['category'] |
product_id | category | Categorical | ['category'] |
description | category | Categorical | ['category'] |
quantity | int64 | Integer | ['numeric'] |
order_date | datetime64[ns] | Datetime | ['time_index'] |
unit_price | float64 | Double | ['numeric'] |
customer_name | string | PersonFullName | [] |
country | category | Categorical | ['category'] |
total | float64 | Double | ['numeric'] |
cancelled | bool | Boolean | [] |
order_product_id | category | Categorical | ['index'] |
Using Woodwork with a Series¶
Woodwork also can be used to store typing information on a Series. There are two approaches for initializing Woodwork on a Series, depending on whether or not the Series dtype is the same as the physical type associated with the LogicalType. For more information on logical types and physical types, refer to Working with Types and Tags.
If your Series dtype matches the physical type associated with the specified or inferred LogicalType, Woodwork can be initialized through the ww namespace, just as with DataFrames.
[20]:
series = pd.Series([1, 2, 3], dtype='int64')
series.ww.init(logical_type='Integer')
series.ww
[20]:
<Series: None (Physical Type = int64) (Logical Type = Integer) (Semantic Tags = {'numeric'})>
In the example above, we specified the Integer
LogicalType for the Series. Because Integer
has a physical type of int64
and this matches the dtype used to create the Series, no Series dtype conversion was needed and the initialization succeeds.
In cases where the LogicalType requires the Series dtype to change, a helper function ww.init_series
must be used. This function will return a new Series object with Woodwork initialized and the dtype of the series changed to match the physical type of the LogicalType.
To demonstrate this case, first create a Series, with a string
dtype. Then, initialize a Woodwork Series with a Categorical
logical type using the init_series
function. Because Categorical
uses a physical type of category
, the dtype of the Series must be changed, and that is why we must use the init_series
function here.
The series that is returned will have Woodwork initialized with the LogicalType set to Categorical
as expected, with the expected dtype of category
.
[21]:
string_series = pd.Series(['a', 'b', 'a'], dtype='string')
ww_series = ww.init_series(string_series, logical_type='Categorical')
ww_series.ww
[21]:
<Series: None (Physical Type = category) (Logical Type = Categorical) (Semantic Tags = {'category'})>
As with DataFrames, Woodwork provides several methods that can be used to update or change the typing information associated with the series. As an example, add a new semantic tag to the series.
[22]:
series.ww.add_semantic_tags('new_tag')
series.ww
[22]:
<Series: None (Physical Type = int64) (Logical Type = Integer) (Semantic Tags = {'new_tag', 'numeric'})>
As you can see from the output above, the specified tag has been added to the semantic tags for the series.
You can also access Series properties methods through the Woodwork namespace. When possible, Woodwork typing information will be retained on the value returned. As an example, you can access the Series shape
property through Woodwork.
[23]:
series.ww.shape
[23]:
(3,)
You can also call Series methods such as sample
. In this case, Woodwork typing information is retained on the Series returned by the sample
method.
[24]:
sample_series = series.ww.sample(2)
sample_series.ww
[24]:
<Series: None (Physical Type = int64) (Logical Type = Integer) (Semantic Tags = {'new_tag', 'numeric'})>
[25]:
sample_series
[25]:
2 3
1 2
dtype: int64
List Logical Types¶
Retrieve all the Logical Types present in Woodwork. These can be useful for understanding the Logical Types, as well as how they are interpreted.
[26]:
from woodwork.type_sys.utils import list_logical_types
list_logical_types()
[26]:
name | type_string | description | physical_type | standard_tags | is_default_type | is_registered | parent_type | |
---|---|---|---|---|---|---|---|---|
0 | Address | address | Represents Logical Types that contain address ... | string | {} | True | True | None |
1 | Age | age | Represents Logical Types that contain whole nu... | int64 | {numeric} | True | True | Integer |
2 | AgeFractional | age_fractional | Represents Logical Types that contain non-nega... | float64 | {numeric} | True | True | Double |
3 | AgeNullable | age_nullable | Represents Logical Types that contain whole nu... | Int64 | {numeric} | True | True | IntegerNullable |
4 | Boolean | boolean | Represents Logical Types that contain binary v... | bool | {} | True | True | BooleanNullable |
5 | BooleanNullable | boolean_nullable | Represents Logical Types that contain binary v... | boolean | {} | True | True | None |
6 | Categorical | categorical | Represents Logical Types that contain unordere... | category | {category} | True | True | None |
7 | CountryCode | country_code | Represents Logical Types that use the ISO-3166... | category | {category} | True | True | Categorical |
8 | Datetime | datetime | Represents Logical Types that contain date and... | datetime64[ns] | {} | True | True | None |
9 | Double | double | Represents Logical Types that contain positive... | float64 | {numeric} | True | True | None |
10 | EmailAddress | email_address | Represents Logical Types that contain email ad... | string | {} | True | True | None |
11 | Filepath | filepath | Represents Logical Types that specify location... | string | {} | True | True | None |
12 | IPAddress | ip_address | Represents Logical Types that contain IP addre... | string | {} | True | True | None |
13 | Integer | integer | Represents Logical Types that contain positive... | int64 | {numeric} | True | True | IntegerNullable |
14 | IntegerNullable | integer_nullable | Represents Logical Types that contain positive... | Int64 | {numeric} | True | True | None |
15 | LatLong | lat_long | Represents Logical Types that contain latitude... | object | {} | True | True | None |
16 | NaturalLanguage | natural_language | Represents Logical Types that contain text or ... | string | {} | True | True | None |
17 | Ordinal | ordinal | Represents Logical Types that contain ordered ... | category | {category} | True | True | Categorical |
18 | PersonFullName | person_full_name | Represents Logical Types that may contain firs... | string | {} | True | True | None |
19 | PhoneNumber | phone_number | Represents Logical Types that contain numeric ... | string | {} | True | True | None |
20 | PostalCode | postal_code | Represents Logical Types that contain a series... | category | {category} | True | True | Categorical |
21 | SubRegionCode | sub_region_code | Represents Logical Types that use the ISO-3166... | category | {category} | True | True | Categorical |
22 | Timedelta | timedelta | Represents Logical Types that contain values s... | timedelta64[ns] | {} | True | True | None |
23 | URL | url | Represents Logical Types that contain URLs, wh... | string | {} | True | True | None |
24 | Unknown | unknown | Represents Logical Types that cannot be inferr... | string | {} | True | True | None |