woodwork.table_accessor.WoodworkTableAccessor

class woodwork.table_accessor.WoodworkTableAccessor(dataframe)[source]
__init__(dataframe)[source]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(dataframe)

Initialize self.

add_semantic_tags(semantic_tags)

Adds specified semantic tags to columns, updating the Woodwork typing information.

describe([include])

Calculates statistics for data contained in the DataFrame.

describe_dict([include])

Calculates statistics for data contained in the DataFrame.

drop(columns)

Drop specified columns from a DataFrame.

init([index, time_index, logical_types, …])

Initializes Woodwork typing information for a DataFrame.

mutual_information([num_bins, nrows, …])

Calculates mutual information between all pairs of columns in the DataFrame that support mutual information.

mutual_information_dict([num_bins, nrows, …])

Calculates mutual information between all pairs of columns in the DataFrame that support mutual information.

pop(column_name)

Return a Series with Woodwork typing information and remove it from the DataFrame.

remove_semantic_tags(semantic_tags)

Remove the semantic tags for any column names in the provided semantic_tags dictionary, updating the Woodwork typing information.

rename(columns)

Renames columns in a DataFrame, maintaining Woodwork typing information.

reset_semantic_tags([columns, retain_index_tags])

Reset the semantic tags for the specified columns to the default values.

select(include)

Create a DataFrame with Woodwork typing information initialized that includes only columns whose Logical Type and semantic tags are specified in the list of types and tags to include.

set_index(new_index)

Sets the index column of the DataFrame.

set_time_index(new_time_index)

Set the time index.

set_types([logical_types, semantic_tags, …])

Update the logical type and semantic tags for any columns names in the provided types dictionaries, updating the Woodwork typing information for the DataFrame.

to_csv(path[, sep, encoding, engine, …])

Write Woodwork table to disk in the CSV format, location specified by path.

to_dictionary()

Get a dictionary representation of the Woodwork typing information.

to_parquet(path[, compression, profile_name])

Write Woodwork table to disk in the parquet format, location specified by path.

to_pickle(path[, compression, profile_name])

Write Woodwork table to disk in the pickle format, location specified by path.

value_counts([ascending, top_n, dropna])

Returns a list of dictionaries with counts for the most frequent values in each column (only

Attributes

iloc

Integer-location based indexing for selection by position.

index

The index column for the table

loc

Access a group of rows by label(s) or a boolean array.

logical_types

A dictionary containing logical types for each column

physical_types

A dictionary containing physical types for each column

schema

A copy of the Woodwork typing information for the DataFrame.

semantic_tags

A dictionary containing semantic tags for each column

time_index

The time index column for the table

types

DataFrame containing the physical dtypes, logical types and semantic tags for the Schema.