WoodworkTableAccessor(dataframe)
WoodworkTableAccessor
WoodworkTableAccessor.add_semantic_tags(…)
WoodworkTableAccessor.add_semantic_tags
Adds specified semantic tags to columns, updating the Woodwork typing information.
WoodworkTableAccessor.describe([include])
WoodworkTableAccessor.describe
Calculates statistics for data contained in the DataFrame.
WoodworkTableAccessor.describe_dict([include])
WoodworkTableAccessor.describe_dict
WoodworkTableAccessor.drop(columns)
WoodworkTableAccessor.drop
Drop specified columns from a DataFrame.
WoodworkTableAccessor.iloc
Integer-location based indexing for selection by position.
WoodworkTableAccessor.index
The index column for the table
WoodworkTableAccessor.init([index, …])
WoodworkTableAccessor.init
Initializes Woodwork typing information for a DataFrame.
WoodworkTableAccessor.loc
Access a group of rows by label(s) or a boolean array.
WoodworkTableAccessor.logical_types
A dictionary containing logical types for each column
WoodworkTableAccessor.mutual_information([…])
WoodworkTableAccessor.mutual_information
Calculates mutual information between all pairs of columns in the DataFrame that support mutual information.
WoodworkTableAccessor.mutual_information_dict([…])
WoodworkTableAccessor.mutual_information_dict
WoodworkTableAccessor.physical_types
A dictionary containing physical types for each column
WoodworkTableAccessor.pop(column_name)
WoodworkTableAccessor.pop
Return a Series with Woodwork typing information and remove it from the DataFrame.
WoodworkTableAccessor.remove_semantic_tags(…)
WoodworkTableAccessor.remove_semantic_tags
Remove the semantic tags for any column names in the provided semantic_tags dictionary, updating the Woodwork typing information.
WoodworkTableAccessor.rename(columns)
WoodworkTableAccessor.rename
Renames columns in a DataFrame, maintaining Woodwork typing information.
WoodworkTableAccessor.reset_semantic_tags([…])
WoodworkTableAccessor.reset_semantic_tags
Reset the semantic tags for the specified columns to the default values.
WoodworkTableAccessor.schema
A copy of the Woodwork typing information for the DataFrame.
WoodworkTableAccessor.select(include)
WoodworkTableAccessor.select
Create a DataFrame with Woodwork typing information initialized that includes only columns whose Logical Type and semantic tags are specified in the list of types and tags to include.
WoodworkTableAccessor.semantic_tags
A dictionary containing semantic tags for each column
WoodworkTableAccessor.set_index(new_index)
WoodworkTableAccessor.set_index
Sets the index column of the DataFrame.
WoodworkTableAccessor.set_time_index(…)
WoodworkTableAccessor.set_time_index
Set the time index.
WoodworkTableAccessor.set_types([…])
WoodworkTableAccessor.set_types
Update the logical type and semantic tags for any columns names in the provided types dictionaries, updating the Woodwork typing information for the DataFrame.
WoodworkTableAccessor.time_index
The time index column for the table
WoodworkTableAccessor.to_csv(path[, sep, …])
WoodworkTableAccessor.to_csv
Write Woodwork table to disk in the CSV format, location specified by path.
WoodworkTableAccessor.to_dictionary()
WoodworkTableAccessor.to_dictionary
Get a dictionary representation of the Woodwork typing information.
WoodworkTableAccessor.to_parquet(path[, …])
WoodworkTableAccessor.to_parquet
Write Woodwork table to disk in the parquet format, location specified by path.
WoodworkTableAccessor.to_pickle(path[, …])
WoodworkTableAccessor.to_pickle
Write Woodwork table to disk in the pickle format, location specified by path.
WoodworkTableAccessor.types
DataFrame containing the physical dtypes, logical types and semantic tags for the Schema.
WoodworkTableAccessor.value_counts([…])
WoodworkTableAccessor.value_counts
Returns a list of dictionaries with counts for the most frequent values in each column (only
WoodworkColumnAccessor(series)
WoodworkColumnAccessor
WoodworkColumnAccessor.add_semantic_tags(…)
WoodworkColumnAccessor.add_semantic_tags
Add the specified semantic tags to the set of tags.
WoodworkColumnAccessor.description
The description of the series
WoodworkColumnAccessor.iloc
WoodworkColumnAccessor.init([logical_type, …])
WoodworkColumnAccessor.init
Initializes Woodwork typing information for a Series.
WoodworkColumnAccessor.loc
WoodworkColumnAccessor.logical_type
The logical type of the series
WoodworkColumnAccessor.metadata
The metadata of the series
WoodworkColumnAccessor.remove_semantic_tags(…)
WoodworkColumnAccessor.remove_semantic_tags
Removes specified semantic tags from the current tags.
WoodworkColumnAccessor.reset_semantic_tags()
WoodworkColumnAccessor.reset_semantic_tags
Reset the semantic tags to the default values.
WoodworkColumnAccessor.semantic_tags
The semantic tags assigned to the series
WoodworkColumnAccessor.set_logical_type(…)
WoodworkColumnAccessor.set_logical_type
Update the logical type for the series, clearing any previously set semantic tags, and returning a new series with Woodwork initialied.
WoodworkColumnAccessor.set_semantic_tags(…)
WoodworkColumnAccessor.set_semantic_tags
Replace current semantic tags with new values.
Schema(column_names, logical_types[, name, …])
Schema
Schema.add_semantic_tags(semantic_tags)
Schema.add_semantic_tags
Schema.index
Schema.logical_types
Schema.rename(columns)
Schema.rename
Renames columns in a Schema
Schema.remove_semantic_tags(semantic_tags)
Schema.remove_semantic_tags
Schema.reset_semantic_tags([columns, …])
Schema.reset_semantic_tags
Schema.semantic_tags
Schema.set_index(new_index)
Schema.set_index
Sets the index.
Schema.set_time_index(new_time_index)
Schema.set_time_index
Schema.set_types([logical_types, …])
Schema.set_types
Update the logical type and semantic tags for any columns names in the provided types dictionaries, updating the Schema at those columns.
Schema.time_index
Schema.types
typing_info_to_dict(dataframe)
typing_info_to_dict
Creates the description for a Woodwork table, including typing information for each column and loading information.
write_dataframe(dataframe, path[, format])
write_dataframe
Write underlying DataFrame data to disk or S3 path.
write_typing_info(typing_info, path)
write_typing_info
Writes Woodwork typing information to the specified path at woodwork_typing_info.json
write_woodwork_table(dataframe, path[, …])
write_woodwork_table
Serialize Woodwork table and write to disk or S3 path.
read_table_typing_information(path)
read_table_typing_information
Read Woodwork typing information from disk, S3 path, or URL.
read_woodwork_table(path[, profile_name])
read_woodwork_table
Read Woodwork table from disk, S3 path, or URL.
Boolean()
Boolean
Represents Logical Types that contain binary values indicating true/false.
Categorical([encoding])
Categorical
Represents Logical Types that contain unordered discrete values that fall into one of a set of possible values.
CountryCode()
CountryCode
Represents Logical Types that contain categorical information specifically used to represent countries.
Datetime([datetime_format])
Datetime
Represents Logical Types that contain date and time information.
Double()
Double
Represents Logical Types that contain positive and negative numbers, some of which include a fractional component.
EmailAddress()
EmailAddress
Represents Logical Types that contain email address values.
Filepath()
Filepath
Represents Logical Types that specify locations of directories and files in a file system.
FullName()
FullName
Represents Logical Types that may contain first, middle and last names, including honorifics and suffixes.
Integer()
Integer
Represents Logical Types that contain positive and negative numbers without a fractional component, including zero (0).
IPAddress()
IPAddress
Represents Logical Types that contain IP addresses, including both IPv4 and IPv6 addresses.
LatLong()
LatLong
Represents Logical Types that contain latitude and longitude values in decimal degrees.
NaturalLanguage()
NaturalLanguage
Represents Logical Types that contain text or characters representing natural human language
Ordinal(order)
Ordinal
Represents Logical Types that contain ordered discrete values.
PhoneNumber()
PhoneNumber
Represents Logical Types that contain numeric digits and characters representing a phone number
SubRegionCode()
SubRegionCode
Represents Logical Types that contain codes representing a portion of a larger geographic region.
Timedelta()
Timedelta
Represents Logical Types that contain values specifying a duration of time
URL()
URL
Represents Logical Types that contain URLs, which may include protocol, hostname and file name
ZIPCode()
ZIPCode
Represents Logical Types that contain a series of postal codes used by the US Postal Service for representing a group of addresses.
TypeSystem([inference_functions, …])
TypeSystem
TypeSystem.add_type(logical_type[, …])
TypeSystem.add_type
Add a new LogicalType to the TypeSystem, optionally specifying the corresponding inference function and a parent type.
TypeSystem.infer_logical_type(series)
TypeSystem.infer_logical_type
Infer the logical type for the given series
TypeSystem.remove_type(logical_type)
TypeSystem.remove_type
Remove a logical type from the TypeSystem.
TypeSystem.reset_defaults()
TypeSystem.reset_defaults
Reset type system to the default settings that were specified at initialization.
TypeSystem.update_inference_function(…)
TypeSystem.update_inference_function
Update the inference function for the specified LogicalType.
TypeSystem.update_relationship(logical_type, …)
TypeSystem.update_relationship
Add or update a relationship.
list_logical_types
Returns a dataframe describing all of the available Logical Types.
list_semantic_tags
Returns a dataframe describing all of the common semantic tags.
get_valid_mi_types
Generate a list of LogicalTypes that are valid for calculating mutual information.
read_csv
Read data from the specified CSV file and return a DataFrame with initialized Woodwork typing information.
init_series
Initializes Woodwork typing information for a Series, returning a new Series.
load_retail([id, nrows, init_woodwork])
load_retail
Load a demo retail dataset into a DataFrame, optionally initializing Woodwork’s typing information.