WoodworkTableAccessor(dataframe)
WoodworkTableAccessor
WoodworkTableAccessor.add_semantic_tags(…)
WoodworkTableAccessor.add_semantic_tags
Adds specified semantic tags to columns, updating the Woodwork typing information.
WoodworkTableAccessor.describe([include, …])
WoodworkTableAccessor.describe
Calculates statistics for data contained in the DataFrame.
WoodworkTableAccessor.describe_dict([…])
WoodworkTableAccessor.describe_dict
WoodworkTableAccessor.drop(columns[, inplace])
WoodworkTableAccessor.drop
Drop specified columns from a DataFrame.
WoodworkTableAccessor.iloc
Integer-location based indexing for selection by position.
WoodworkTableAccessor.index
The index column for the table
WoodworkTableAccessor.init(**kwargs)
WoodworkTableAccessor.init
Initializes Woodwork typing information for a DataFrame with a partial schema.
WoodworkTableAccessor.init_with_full_schema(schema)
WoodworkTableAccessor.init_with_full_schema
Initializes Woodwork typing information for a DataFrame with a complete schema.
WoodworkTableAccessor.init_with_partial_schema([…])
WoodworkTableAccessor.init_with_partial_schema
WoodworkTableAccessor.loc
Access a group of rows by label(s) or a boolean array.
WoodworkTableAccessor.logical_types
A dictionary containing logical types for each column
WoodworkTableAccessor.metadata
Metadata of the DataFrame
WoodworkTableAccessor.mutual_information([…])
WoodworkTableAccessor.mutual_information
Calculates mutual information between all pairs of columns in the DataFrame that support mutual information.
WoodworkTableAccessor.mutual_information_dict([…])
WoodworkTableAccessor.mutual_information_dict
WoodworkTableAccessor.name
Name of the DataFrame
WoodworkTableAccessor.physical_types
A dictionary containing physical types for each column
WoodworkTableAccessor.pop(column_name)
WoodworkTableAccessor.pop
Return a Series with Woodwork typing information and remove it from the DataFrame.
WoodworkTableAccessor.remove_semantic_tags(…)
WoodworkTableAccessor.remove_semantic_tags
Remove the semantic tags for any column names in the provided semantic_tags dictionary, updating the Woodwork typing information.
WoodworkTableAccessor.rename(columns[, inplace])
WoodworkTableAccessor.rename
Renames columns in a DataFrame, maintaining Woodwork typing information.
WoodworkTableAccessor.reset_semantic_tags([…])
WoodworkTableAccessor.reset_semantic_tags
Reset the semantic tags for the specified columns to the default values.
WoodworkTableAccessor.schema
A copy of the Woodwork typing information for the DataFrame.
WoodworkTableAccessor.select([include, …])
WoodworkTableAccessor.select
Create a DataFrame with Woodwork typing information initialized that includes only columns whose Logical Type and semantic tags match conditions specified in the list of types and tags to include or exclude.
WoodworkTableAccessor.semantic_tags
A dictionary containing semantic tags for each column
WoodworkTableAccessor.set_index(new_index)
WoodworkTableAccessor.set_index
Sets the index column of the DataFrame.
WoodworkTableAccessor.set_time_index(…)
WoodworkTableAccessor.set_time_index
Set the time index.
WoodworkTableAccessor.set_types([…])
WoodworkTableAccessor.set_types
Update the logical type and semantic tags for any columns names in the provided types dictionaries, updating the Woodwork typing information for the DataFrame.
WoodworkTableAccessor.time_index
The time index column for the table
WoodworkTableAccessor.to_disk(path[, …])
WoodworkTableAccessor.to_disk
Write Woodwork table to disk in the format specified by format, location specified by path.
WoodworkTableAccessor.to_dictionary()
WoodworkTableAccessor.to_dictionary
Get a dictionary representation of the Woodwork typing information.
WoodworkTableAccessor.types
DataFrame containing the physical dtypes, logical types and semantic tags for the schema.
WoodworkTableAccessor.use_standard_tags
A dictionary containing the use_standard_tags setting for each column in the table
WoodworkTableAccessor.value_counts([…])
WoodworkTableAccessor.value_counts
Returns a list of dictionaries with counts for the most frequent values in each column (only
WoodworkColumnAccessor(series)
WoodworkColumnAccessor
WoodworkColumnAccessor.add_semantic_tags(…)
WoodworkColumnAccessor.add_semantic_tags
Add the specified semantic tags to the set of tags.
WoodworkColumnAccessor.box_plot_dict([quantiles])
WoodworkColumnAccessor.box_plot_dict
Gets the information necessary to create a box and whisker plot with outliers for a numeric column using the IQR method.
WoodworkColumnAccessor.description
The description of the series
WoodworkColumnAccessor.origin
The origin of the series
WoodworkColumnAccessor.iloc
WoodworkColumnAccessor.init([logical_type, …])
WoodworkColumnAccessor.init
Initializes Woodwork typing information for a Series.
WoodworkColumnAccessor.loc
WoodworkColumnAccessor.logical_type
The logical type of the series
WoodworkColumnAccessor.metadata
The metadata of the series
WoodworkColumnAccessor.nullable
Whether the column can contain null values.
WoodworkColumnAccessor.remove_semantic_tags(…)
WoodworkColumnAccessor.remove_semantic_tags
Removes specified semantic tags from the current tags.
WoodworkColumnAccessor.reset_semantic_tags()
WoodworkColumnAccessor.reset_semantic_tags
Reset the semantic tags to the default values.
WoodworkColumnAccessor.semantic_tags
The semantic tags assigned to the series
WoodworkColumnAccessor.set_logical_type(…)
WoodworkColumnAccessor.set_logical_type
Update the logical type for the series, clearing any previously set semantic tags, and returning a new series with Woodwork initialied.
WoodworkColumnAccessor.set_semantic_tags(…)
WoodworkColumnAccessor.set_semantic_tags
Replace current semantic tags with new values.
WoodworkColumnAccessor.use_standard_tags
TableSchema(column_names, logical_types[, …])
TableSchema
TableSchema.add_semantic_tags(semantic_tags)
TableSchema.add_semantic_tags
TableSchema.index
TableSchema.logical_types
TableSchema.metadata
Metadata of the table
TableSchema.rename(columns)
TableSchema.rename
Renames columns in a TableSchema
TableSchema.remove_semantic_tags(semantic_tags)
TableSchema.remove_semantic_tags
TableSchema.reset_semantic_tags([columns, …])
TableSchema.reset_semantic_tags
TableSchema.name
Name of schema
TableSchema.semantic_tags
TableSchema.set_index(new_index[, validate])
TableSchema.set_index
Sets the index.
TableSchema.set_time_index(new_time_index[, …])
TableSchema.set_time_index
TableSchema.set_types([logical_types, …])
TableSchema.set_types
Update the logical type and semantic tags for any columns names in the provided types dictionaries, updating the TableSchema at those columns.
TableSchema.time_index
TableSchema.types
DataFrame containing the physical dtypes, logical types and semantic tags for the TableSchema.
TableSchema.use_standard_tags
ColumnSchema([logical_type, semantic_tags, …])
ColumnSchema
ColumnSchema.description
Description of the column
ColumnSchema.origin
Origin of the column
ColumnSchema.is_boolean
Whether the ColumnSchema is a Boolean column
ColumnSchema.is_categorical
Whether the ColumnSchema is categorical in nature
ColumnSchema.is_datetime
Whether the ColumnSchema is a Datetime column
ColumnSchema.is_numeric
Whether the ColumnSchema is numeric in nature
ColumnSchema.metadata
Metadata of the column
typing_info_to_dict(dataframe)
typing_info_to_dict
Creates the description for a Woodwork table, including typing information for each column and loading information.
write_dataframe(dataframe, path[, format])
write_dataframe
Write underlying DataFrame data to disk or S3 path.
write_typing_info(typing_info, path)
write_typing_info
Writes Woodwork typing information to the specified path at woodwork_typing_info.json
write_woodwork_table(dataframe, path[, …])
write_woodwork_table
Serialize Woodwork table and write to disk or S3 path.
read_table_typing_information(path)
read_table_typing_information
Read Woodwork typing information from disk, S3 path, or URL.
read_woodwork_table(path[, profile_name, …])
read_woodwork_table
Read Woodwork table from disk, S3 path, or URL.
Address()
Address
Represents Logical Types that contain address values.
Age()
Age
Represents Logical Types that contain whole numbers indicating a person’s age.
AgeFractional()
AgeFractional
Represents Logical Types that contain non-negative floating point numbers indicating a person’s age.
AgeNullable()
AgeNullable
Boolean()
Boolean
Represents Logical Types that contain binary values indicating true/false.
BooleanNullable()
BooleanNullable
Categorical([encoding])
Categorical
Represents Logical Types that contain unordered discrete values that fall into one of a set of possible values.
CountryCode()
CountryCode
Represents Logical Types that use the ISO-3166 standard country code to represent countries.
Datetime([datetime_format])
Datetime
Represents Logical Types that contain date and time information.
Double()
Double
Represents Logical Types that contain positive and negative numbers, some of which include a fractional component.
EmailAddress()
EmailAddress
Represents Logical Types that contain email address values.
Filepath()
Filepath
Represents Logical Types that specify locations of directories and files in a file system.
Integer()
Integer
Represents Logical Types that contain positive and negative numbers without a fractional component, including zero (0).
IntegerNullable()
IntegerNullable
IPAddress()
IPAddress
Represents Logical Types that contain IP addresses, including both IPv4 and IPv6 addresses.
LatLong()
LatLong
Represents Logical Types that contain latitude and longitude values in decimal degrees.
NaturalLanguage()
NaturalLanguage
Represents Logical Types that contain text or characters representing natural human language
Ordinal([order])
Ordinal
Represents Logical Types that contain ordered discrete values.
PersonFullName()
PersonFullName
Represents Logical Types that may contain first, middle and last names, including honorifics and suffixes.
PhoneNumber()
PhoneNumber
Represents Logical Types that contain numeric digits and characters representing a phone number
PostalCode()
PostalCode
Represents Logical Types that contain a series of postal codes for representing a group of addresses.
SubRegionCode()
SubRegionCode
Represents Logical Types that use the ISO-3166 standard sub-region code to represent a portion of a larger geographic region.
Timedelta()
Timedelta
Represents Logical Types that contain values specifying a duration of time
Unknown()
Unknown
Represents Logical Types that cannot be inferred as a specific Logical Type.
URL()
URL
Represents Logical Types that contain URLs, which may include protocol, hostname and file name
TypeSystem([inference_functions, …])
TypeSystem
TypeSystem.add_type(logical_type[, …])
TypeSystem.add_type
Add a new LogicalType to the TypeSystem, optionally specifying the corresponding inference function and a parent type.
TypeSystem.infer_logical_type(series)
TypeSystem.infer_logical_type
Infer the logical type for the given series
TypeSystem.remove_type(logical_type)
TypeSystem.remove_type
Remove a logical type from the TypeSystem.
TypeSystem.reset_defaults()
TypeSystem.reset_defaults
Reset type system to the default settings that were specified at initialization.
TypeSystem.update_inference_function(…)
TypeSystem.update_inference_function
Update the inference function for the specified LogicalType.
TypeSystem.update_relationship(logical_type, …)
TypeSystem.update_relationship
Add or update a relationship.
list_logical_types
Returns a dataframe describing all of the available Logical Types.
list_semantic_tags
Returns a dataframe describing all of the common semantic tags.
concat_columns
Concatenate Woodwork objects along the columns axis.
get_valid_mi_types
Generate a list of LogicalTypes that are valid for calculating mutual information.
read_file
Read data from the specified file and return a DataFrame with initialized Woodwork typing information.
get_invalid_schema_message
Return a message indicating the reason that the provided schema cannot be used to initialize Woodwork on the dataframe.
init_series
Initializes Woodwork typing information for a series, numpy.ndarray or pd.api.extensions.
is_schema_valid
Check if a schema is valid for initializing Woodwork on a dataframe
load_retail([id, nrows, init_woodwork])
load_retail
Load a demo retail dataset into a DataFrame, optionally initializing Woodwork’s typing information.