Source code for woodwork.utils


import ast
import importlib
import re

import numpy as np
import pandas as pd

import woodwork as ww


def import_or_none(library):
    '''
    Attemps to import the requested library.

    Args:
        library (str): the name of the library
    Returns: the library if it is installed, else None
    '''
    try:
        return importlib.import_module(library)
    except ImportError:
        return None


def camel_to_snake(s):
    s = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', s)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s).lower()


def _convert_input_to_set(semantic_tags, error_language='semantic_tags'):
    """Takes input as a single string, a list of strings, or a set of strings
        and returns a set with the supplied values. If no values are supplied,
        an empty set will be returned."""
    if not semantic_tags:
        return set()

    if type(semantic_tags) not in [list, set, str]:
        raise TypeError(f"{error_language} must be a string, set or list")

    if isinstance(semantic_tags, str):
        return {semantic_tags}

    if isinstance(semantic_tags, list):
        semantic_tags = set(semantic_tags)

    if not all([isinstance(tag, str) for tag in semantic_tags]):
        raise TypeError(f"{error_language} must contain only strings")

    return semantic_tags


def _get_mode(series):
    """Get the mode value for a series"""
    mode_values = series.mode()
    if len(mode_values) > 0:
        return mode_values[0]
    return None


[docs]def read_csv(filepath=None, name=None, index=None, time_index=None, semantic_tags=None, logical_types=None, use_standard_tags=True, **kwargs): """Read data from the specified CSV file and return a Woodwork DataTable Args: filepath (str): A valid string path to the file to read name (str, optional): Name used to identify the datatable. index (str, optional): Name of the index column in the dataframe. time_index (str, optional): Name of the time index column in the dataframe. semantic_tags (dict, optional): Dictionary mapping column names in the dataframe to the semantic tags for the column. The keys in the dictionary should be strings that correspond to columns in the underlying dataframe. There are two options for specifying the dictionary values: (str): If only one semantic tag is being set, a single string can be used as a value. (list[str] or set[str]): If multiple tags are being set, a list or set of strings can be used as the value. Semantic tags will be set to an empty set for any column not included in the dictionary. logical_types (dict[str -> LogicalType], optional): Dictionary mapping column names in the dataframe to the LogicalType for the column. LogicalTypes will be inferred for any columns not present in the dictionary. use_standard_tags (bool, optional): If True, will add standard semantic tags to columns based on the inferred or specified logical type for the column. Defaults to True. **kwargs: Additional keyword arguments to pass to the underlying ``pandas.read_csv`` function. For more information on available keywords refer to the pandas documentation. Returns: woodwork.DataTable: DataTable created from the specified CSV file """ dataframe = pd.read_csv(filepath, **kwargs) return ww.DataTable(dataframe, name=name, index=index, time_index=time_index, semantic_tags=semantic_tags, logical_types=logical_types, use_standard_tags=use_standard_tags)
def _new_dt_including(datatable, new_data): ''' Creates a new DataTable with specified data and columns Args: datatable (DataTable): DataTable with desired information new_data (DataFrame): subset of original DataTable Returns: DataTable: New DataTable with attributes from original DataTable but data from new DataTable ''' cols = new_data.columns new_logical_types = {} new_semantic_tags = {} new_column_descriptions = {} new_column_metadata = {} for col_name, col in datatable.columns.items(): if col_name not in cols: continue new_logical_types[col_name] = col.logical_type new_semantic_tags[col_name] = col.semantic_tags new_column_descriptions[col_name] = col.description new_column_metadata[col_name] = col.metadata new_index = datatable.index if datatable.index in cols else None new_time_index = datatable.time_index if datatable.time_index in cols else None if new_index is not None: new_semantic_tags[new_index] = new_semantic_tags[new_index].difference({'index'}) if new_time_index is not None: new_semantic_tags[new_time_index] = new_semantic_tags[new_time_index].difference({'time_index'}) return ww.DataTable(new_data, name=datatable.name, index=new_index, time_index=new_time_index, semantic_tags=new_semantic_tags, logical_types=new_logical_types, use_standard_tags=datatable.use_standard_tags, table_metadata=datatable.metadata, column_metadata=new_column_metadata, column_descriptions=new_column_descriptions) def import_or_raise(library, error_msg): ''' Attempts to import the requested library. If the import fails, raises an ImportError with the supplied error message. Args: library (str): the name of the library error_msg (str): error message to return if the import fails ''' try: return importlib.import_module(library) except ImportError: raise ImportError(error_msg) def _is_s3(string): ''' Checks if the given string is a s3 path. Returns a boolean. ''' return "s3://" in string def _is_url(string): ''' Checks if the given string is an url path. Returns a boolean. ''' return 'http' in string def _reformat_to_latlong(latlong, use_list=False): """Reformats LatLong columns to be tuples of floats. Uses np.nan for null values. """ if _is_null_latlong(latlong): return np.nan if isinstance(latlong, str): try: # Serialized latlong columns from csv or parquet will be strings, so null values will be # read as the string 'nan' in pandas and Dask and 'NaN' in Koalas # neither of which which is interpretable as a null value if 'nan' in latlong: latlong = latlong.replace('nan', 'None') if 'NaN' in latlong: latlong = latlong.replace('NaN', 'None') latlong = ast.literal_eval(latlong) except ValueError: pass if isinstance(latlong, (tuple, list)): if len(latlong) != 2: raise ValueError(f'LatLong values must have exactly two values. {latlong} does not have two values.') latitude, longitude = map(_to_latlong_float, latlong) # (np.nan, np.nan) should be counted as a single null value if pd.isnull(latitude) and pd.isnull(longitude): return np.nan if use_list: return [latitude, longitude] return (latitude, longitude) raise ValueError(f'LatLongs must either be a tuple, a list, or a string representation of a tuple. {latlong} does not fit the criteria.') def _to_latlong_float(val): ''' Attempts to convert a value to a float, propogating null values. ''' if _is_null_latlong(val): return np.nan try: return float(val) except (ValueError, TypeError): raise ValueError(f'Latitude and Longitude values must be in decimal degrees. The latitude or longitude represented by {val} cannot be converted to a float.') def _is_null_latlong(val): if isinstance(val, str): return val == 'None' or val == 'nan' or val == 'NaN' # Since we can have list inputs here, pd.isnull will not have a relevant truth value for lists return not isinstance(val, list) and pd.isnull(val)
[docs]def get_valid_mi_types(): """ Generate a list of LogicalTypes that are valid for calculating mutual information. Note that index columns are not valid for calculating mutual information, but their types may be returned by this function. Args: None Returns: list(LogicalType): A list of the LogicalTypes that can be use to calculate mutual information """ valid_types = [] for ltype in ww.type_system.registered_types: if 'category' in ltype.standard_tags: valid_types.append(ltype) elif 'numeric' in ltype.standard_tags: valid_types.append(ltype) elif ltype == ww.logical_types.Datetime or ltype == ww.logical_types.Boolean: valid_types.append(ltype) return valid_types