woodwork.table_schema.ColumnSchema#
- class woodwork.table_schema.ColumnSchema(logical_type=None, semantic_tags=None, use_standard_tags=False, description=None, origin=None, metadata=None, validate=True)[source]#
- __init__(logical_type=None, semantic_tags=None, use_standard_tags=False, description=None, origin=None, metadata=None, validate=True)[source]#
Create ColumnSchema
- Parameters:
logical_type (LogicalType, optional) – The column’s LogicalType.
semantic_tags (str, list, set, optional) – The semantic tag(s) specified for the column.
use_standard_tags (boolean, optional) – If True, will add standard semantic tags to the column based on the specified logical type if a logical type is defined for the column. Defaults to False.
description (str, optional) – User description of the column.
origin (str, optional) – Origin of the column (i.e. “base” or “engineered”).
metadata (dict[str -> json serializable], optional) – Extra metadata provided by the user. The dictionary must contain data types that are JSON serializable such as string, integers, and floats. DataFrame and Series types are not supported.
validate (bool, optional) – Whether to perform parameter validation. Defaults to True.
Methods
__init__
([logical_type, semantic_tags, ...])Create ColumnSchema
Attributes
The custom semantic tag(s) specified for the column.
Description of the column
Whether the ColumnSchema is a Boolean column
Whether the ColumnSchema is categorical in nature
Whether the ColumnSchema is a Datetime column
is_latlong
Whether the ColumnSchema is a LatLong column
is_natural_language
Whether the ColumnSchema is a Natural Language column
Whether the ColumnSchema is numeric in nature
is_ordinal
Whether the ColumnSchema is a Ordinal column
is_unknown
Whether the ColumnSchema is a Unknown column
Metadata of the column
Origin of the column